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Abstract: Deep neural networks (DNNs) have technical issues 

such as long training time as the network size increases. 

Parameters require significant memory, which may cause 

migration issues for embedded devices. DNNs applied various 

pruning techniques to reduce the network size in deep neural 

networks, but many problems still exist when applying the pruning 

techniques. Among neural networks, several applications applied 

autoencoders for reconstruction and dimension reduction. 

However, network size is a disadvantage of autoencoders since the 

architecture of the autoencoders has a double workload due to the 

encoding and decoding processes. In this research, we chose 

autoencoders and two deep neural networks – AlexNet and 

VGG16 to apply out-of-order layer pruning. We perform the 

sensitivity analysis to explore the performance variations for the 

network architecture and network complexity through an 

out-of-order layer pruning mechanism. As a result of applying the 

proposed layer pruning scheme to the autoencoder, we developed 

the accordion autoencoder (A2E) and applied credit card fraud 

detection and MNIST classification. Our results show 4.9% and 

13.6% performance drops, respectively, but we observe a 

significant reduction in network complexity, 85.1% and 94.5% for 

each application. We extend the out-of-order layer pruning to 

deeper learning networks. In our approach, we propose a simple 

yet efficient scheme, accuracy-aware structured filter pruning 

based on the characterization of each convolutional layer 

combined with the quantization of fully connected layers. We 

investigate the accuracy and compression rate of each layer using 

a fixed pruning ratio, and then the pruning priority is rearranged 

depending on the accuracy of each layer. Our analysis of layer 

characterization shows that the pruning order of the layers does 

affect the final accuracy of the deep neural network. Based on our 

experiments using the proposed pruning scheme, the parameter 

size in the AlexNet can be up to 47.28x smaller than the original 

model. We also obtained comparable results for VGG16, 

achieving a maximum compression rate of 35.21x. 
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I. INTRODUCTION

Deep neural networks (DNNs) require huge 

computational workloads with large memory capacity to train 

weight values in deeper layers and conduct inference 

operations. Also, large-scale DNNs are hard to apply to 

embedded devices with limited computational resources. To 

resolve those issues, model compression techniques (e.g., 

pruning and quantization) for neural networks have been 

proposed to reduce the model redundancy without 

significantly degrading accuracy and performance. 

Several applications applied autoencoders for 

dimensionality reduction, data reconstruction, anomaly 

detection, and classification. For dimensionality reduction, 

the lower dimension of data can generalize sets of higher 

dimensions that provide intuitive features. In modern 

applications, generative models use lower dimensional latent 

spaces to change the features of the output. Also, 

autoencoders have been used in quantum data compression 

problems [1]. However, autoencoders are not used in 

practical data compression because other modern algorithms 

perform better without the required training. It would also be 

impractical to gather a dataset for each compression 

application because the autoencoder networks are not 

performing well on dataset transfer learning. This lack of 

dataset flexibility is one of the main reasons that 

autoencoders are one of the potential candidates for anomaly 

detection. Once the autoencoder network has trained with a 

particular dataset, any data fed through the network slightly 

outside the training dataset results in a high reconstruction 

loss. However, network size is a disadvantage of 

autoencoders since the architecture of the autoencoders has a 

double workload due to the encoding and decoding 

processes.  

As the first application for layer characterization and layer 

optimization, in this paper, we select autoencoders to perform 

the sensitivity analysis to explore the performance variations 

for the network architecture and the network complexity 

through an out-of-order layer pruning mechanism. The 

motivation behind exploring different autoencoder 

architectures is their practical uses for applications such as 

anomaly detection, classification, and other usages in 

generative models generating novel output using the latent 

space in the autoencoder. Additionally, understanding the 

mechanism to improve dimensionality reduction may help in 

understanding the behaviors of the human brain. 

We extend the out-of-order layer optimization to deeper 

learning networks.  
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The computational complexity of the network depends on 

the effectiveness of the pruning algorithm used in identifying 

and preserving the essential information from the original 

network. Various research proposes to reduce the complexity 

of workloads. In our approach, we develop a simple and 

accuracy-aware structured filter pruning based on the 

characterization of each convolutional layer combined with 

the quantization of fully connected layers. Among various 

pruning schemes, filter pruning is a naturally structured prune 

method without introducing sparsity. Therefore, it does not 

require sparse libraries or specialized hardware [2]. We 

investigate the accuracy and compression rate of each layer 

using a fixed pruning ratio, and the pruning priority is 

rearranged based on the accuracy of each layer. Our analysis 

of layer characterization shows that the pruning order of the 

layers does affect the final accuracy of the deep neural 

network. Based on our experiments using the proposed 

pruning scheme, the parameter size of AlexNet can be 

reduced up to 47.28x compared to the original model with an 

accuracy loss of less than 1%. Similar results are also 

obtained with VGG16, achieving a maximum compression 

rate of 35.21x.  

The rest of the paper has organized as follows. In Section II, 

we describe related work. Section III describes the layer 

characterization of autoencoders and DNNs. Section IV 

describes the proposed out-of-order layer pruning method 

and experimental results. In Section V, we describe the 

obtained results and analyze them. Finally, we conclude in 

Section VI. 

II.  RELATED WORK 

Tirumala [3] introduced a simple pruning strategy in that all 

connections with weights below a threshold are excluded 

from training to reduce computational workloads. This 

process had to be followed by fine-tuning to recover the 

accuracy lost by eliminating weights. To avoid the limitations 

of non-structured pruning, other papers [4] and [5] argued 

that filter-level pruning could be a better option. In [4], a 

compressed model proposes to prune the unimportant filters 

of CNN models in both training and testing stages, providing 

performance acceleration and network compression. Also, in 

[5], Luo studied the effect of pruning sensitivity to decide the 

pruning rate for the different convolutional layers. For further 

compression, some research works have implemented 

post-training quantization after pruning. In [6], the model 

size has reduced with three stages of the compression 

pipeline: weight pruning, quantization, and Huffman coding. 

However, one noticeable problem when using pruning is the 

large number of epochs required for retraining the model 

after pruning. In our approach, we will introduce one 

parameter: the retraining order of the layers. We will show 

how this parameter can affect the fine-tuning process and the 

accuracy with a smaller number of epochs. 

III. LAYER CHARACTERIZATION 

A. Implementation of Pruning 

An autoencoder is a fully connected neural network that 

compresses the input into a smaller and more meaningful 

representation and then decodes that representation into an 

output resembling the original input [7]. Usually, decreasing 

the dimensionality of the input is the goal of the autoencoder. 

Generally, the autoencoder learns distinguishable attributes 

of the data represented in the latent space. The latent space is 

a lower-dimensional vector and the smallest middle layer. 

These attributes tend to be generalizations of the data 

representing one or many features in the input. The latent 

attributes can sometimes resemble the results of principal 

component analysis (PCA) but often perform better due to the 

nonlinearity of the encoder and decoder layers [8][9]. Figure 

1 shows the architecture of autoencoders with two encoding 

processes, two decoding processes, and one latent space. 

We use Tensorflow 2 with Keras to implement all network 

models. For the performance metrics, we use the F1 score, 

recall, precision, accuracy, loss, and complexity for the 

autoencoder. Two applications are used for the experiments, 

including anomaly detection in credit card transaction data 

and image classification using the MNIST dataset [10][11]. 

Generally, precision is a relevance-based metric based on a 

percentage of correctly predicted or classified instances, and 

recall is the percentage of retrieved instances. One could 

classify all instances as one category and have 100% recall 

but with 0% precision. A problem-specific balance between 

the two is optimal for best performance. The F1 score is the 

harmonic mean between precision and recall. Also, the F1 

score is considered the primary performance metric for both 

datasets. The F1 score has adjustable weights to show the 

importance of precision versus recall. To keep things simple 

and maintain the F1 score meaningful between datasets, 

precision and recall are equally weighted in the F1 score for 

all results. 

Input data Reconstructed 
data

Latent 
space

Encoder Decoder

 

[Fig. 1: The Architecture of Autoencoder [8-4-2-4-8]] 

There is no established standard for autoencoder 

architecture for classification or anomaly detection. For 

characterizing the autoencoder network in this research, we 

use the architecture [16-8-4-2-4-8-16] as a baseline 

architecture [10]. The first layer of the baseline autoencoder's 

encoding module has 16 nodes, contributing to the model's 

complexity. One of the goals of this research is to reduce 

network complexity. We perform the performance sensitivity 

analysis by changing the number of nodes in the first layer (at 

the encoding side) and the seventh layer (at the decoding 

side) to preserve the symmetry of the architecture. Figure 2 

(a) shows the performance (F1 score) sensitivities for Layer 1 

and 7.  
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Based on our observation of sensitivity analysis, we 

observe notable improvement with the smaller number of 

nodes rather than the larger ones. If we reduce the number of 

nodes of Layer 1 into Layer 4, we can get better performance 

(37.5% improvement) and lower complexity (41.5% 

reduction). The performance can vary in other applications or 

datasets, but our results from the sensitivity analysis led us to 

further characterization and performance evaluation.  

 
(a) 

 
(b) 

[Fig.2: Performance Sensitivity Analysis: F1 Score vs. the 

Number of Nodes in Layer 1-7 Pair and 2-6 Pair: (a) Layer 1 

and Layer 7 variations (Layer 16 is the Original Node with 

Green Bar); (b) Layer 2 and Layer 6 Variations (Layer 8 is the 

Original Node with Green Bar)] 

In the second step, after changing the number of nodes in 

Layer 2 and Layer 6 while maintaining four nodes in Layer 1 

and Layer 7, we observe the performance variations. Based 

on the results from the experiments, 2 is the best-performing 

number of nodes for layers 2 and 6 in terms of the F1 score 

shown in Figure 2 (b). As the next step for layers 3 and 5, we 

observe that the best number of nodes is six from 

performance (F1 score) based on the sensitivity analysis 

shown in Figure 3 (a). As a final step, we change the number 

of nodes in the latent space to see the performance variations. 

However, distinct performance improvement has not 

observed from the sensitivity analysis. As shown in Figure 3 

(b), performance variations are limited, and the original 

number of nodes is among the best performance groups. 

 The sensitivity analysis performs on a specific application 

with the dataset. It is hard to say the scheme we used for 

extracting the best-performing number of nodes is a general 

solution. However, it provides meaningful results where 

some performance numbers (F1 score, precision, complexity, 

and recall) are improved while the accuracy number is 

marginally dropped (13.6%). Based on our analysis, accuracy 

has some inverse relationships to the F1 classification metrics, 

where, up to a threshold, lower accuracy scores provide 

improved F1, precision, and recall scores.  

 
(a) 
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(b) 

[Fig.3: Performance Sensitivity Analysis: F1 Score vs. the 

Number of Nodes in Layer 3-5 Pair and the Latent Space: (a) 

Layer 3 and Layer 5 variations (Layer 4 is the Original Node 

with Green Bar); (b) The Latent Space Variations (Layer 2 is 

the Original Node with Green Bar)] 

B. Layer Characterization of DNNs 

We perform the layer characterization in two different 

models: AlexNet and VGG16 [12][13]. The two datasets 

chosen are CIFAR-10 and CIFAR-100 [14][15]. CIFAR-10 

consists of 60,000 images that belong to 10 different classes. 

50,000 images are used for training and 1,000 for testing. 

CIFAR-100 is another version of CIFAR-10 with the same 

number of images, but it contains 100 classes instead of 10. 

Pytorch [16] has used to conduct the proposed experiments. 

Transfer learning is applied as both CNN architectures are 

previously pre-trained with the ImageNet [17] dataset. We 

used a batch size of 64, a learning rate 0.001, and SGD as the 

optimizer. As for the hardware, all experiments has done with 

NVIDIA Quadro P6000. 

AlexNet with CIFAR-10 and CIFAR-100: Our first DNN 

characterizations are pruning AlexNet with CIFAR-10 and 

CIFAR-100. AlexNet has five convolutional layers: conv0 to 

conv4. As a first step, we applied the pruning sensitivity 

sweep for both datasets separately. Figure 4 shows pruning 

results with CIFAR-10. It is noticeable that the accuracy for 

convolutional layer 4 starts at a lower point than the rest of 

the layers and does not go over 0.9 in all the sweeps.  

 
(a) 

 
(b) 

[Fig.4: AlexNet Pruning Sweep Using CIFAR-10 and 

CIFAR-100: (a) Accuracy for Pruning Sweep with 

CIFAR-10; (b) Accuracy for Pruning Sweep with 

CIFAR-100] 

VGG16 with CIFAR-10 and CIFAR-100: We also apply 

our method to deeper networks to analyze its performance in 

more complex architectures. Figure 5 shows the pruning 

sweep of VGG16 using CIFAR-100. In this case, the 

threshold factor is 0.99 for CIFAR-10 and 0.997 for 

CIFAR-100. Likewise, with AlexNet, the pruning is not 

applied to the last convolutional layer because it would 

damage the performance of the final model. The model has 

retrained with five epochs after pruning each layer. 

IV. OUT-OF-ORDER LAYER PRUNING 

A. Accordion Autoencoders (A2E) 

Generally, the architecture of the autoencoders has two 

parts – the down-sampling part (encoding) and up-sampling 

(decoding). The complexity is monotonically decreased and 

increased throughout the process. Based on our sensitivity 

analysis of fraud detection cases, the extracted 

best-performing architecture [4-2-6-2-6-2-4] does not have 

the feature of monotonicity. The number of nodes in each 

layer is up and down. We name it accordion autoencoders 

(A2E) because the shape of the architecture is similar to the 

accordion, as shown in Figure 6. In computer vision, the 

pyramid representation, a multi-scale image data 

representation, is used to extract the features through 

subsampling.  
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In autoencoders, we can extract features from the first layer. 

Those features are typically lower dimensions than the input 

size. Then, as in accordion autoencoders, if we increase the 

dimension from the subsampled data in the second layer, 

many meaningful features will be lost or deformed. However, 

we can keep the features through the iterative cost reduction 

in deep learning, and the output images have been used for 

another dimension reduction and feature extraction. The 

accordion architecture will anneal the features through the 

dimension up/downs and the iterative optimizations.  

 
(a) 

 
(b) 

[Fig.5: VGG16 Pruning Sweep using CIFAR-10 and 

CIFAR-100 (Convolution layers 0-12): (a) Accuracy for 

Pruning Sweep with CIFAR-10; (b) Accuracy for 

Pruning Sweep with CIFAR-100] 

Input data Reconstructed 
data

Latent 
space

Encoder Decoder

 

[Fig.6: The Accordion Autoencoder (A2E) [N-4-6-2-6-4-N]] 

The general concept of the accordion autoencoder is that 

data gets compressed and decompressed multiple times to get 

more meaningful features recorded at each compression stage. 

Essentially, it is an extension of the ability of the classic 

autoencoder to record meaningful features due to the memory 

capacity in the expansion layers immediately following each 

latent space layer. Presumably, the most meaningful features 

will end up in the last latent space after being 'autoencoded' 

several times to ensure only features that affect the 

reconstruction loss. 

B. Out-of-order Layer Pruning for DNNs 

Firstly, we describe the filter pruning technique used for 

initial compression through characterizing individual layers. 

Then, we explain how the pruning rate and the order of the 

layers are selected. Finally, we use quantization in fully 

connected layers to achieve further compression while 

maintaining the model's accuracy. Figure 7 shows the overall 

flow of the proposed approach. 
Pre-trained
CNN Model

Filter Pruning 
Sweep

Pruning Schedule 
[Algorithm 1]

Filter Selection

Prune Layer

Fine-tune Model

All Layers Pruned?

Quantization

Final Pruned 
Model

Yes

No

 

[Fig.7: Overall Flow of DNN Out-of-Order Layer 

Pruning] 

We consider a CNN network with L convolutional layers. 

The weight matrix in each layer, , can be expressed as 

 where Ni denotes the number of input 

channels of the convolutional layer i and Ni+1 next layer's 

input channels. The number of input channels is the same as 

the number of output channels for the layer i. The constant k 

represents the kernel dimension, considering that height and 

width are the same. We denote the kernel as  . 

Every filter  in layer  can be expressed as . 

The Pi is the pruning rate for each layer.  

The first step of the proposed method is applying filter 

pruning. The process consists of identifying those filters 

considered unimportant or redundant. The importance of the 

filters needs to be evaluated according to a criterion to identify 

the redundant filters. After evaluation of different norms 

through our experiments, we select ℓ2 norm, also known as the 

Euclidean norm, as a criterion: 

    …   (1) 

Evaluating each layer of the CNN model, we can rank the 

filters by assuming the ones with a smaller norm will lead to 

lower activation values and less impact in the final 

classification. Filter selection for every layer using pruning 

with ℓ2 norm can be formulated mathematically as: 

 

                                      (2) 

s.t  

 

S represents a subset of all the possible output channels. N(S) 

is the total number of elements in the S. The S  is the number 

of filters that need pruning. After pruning the selected filters 

in the layers , we will fine-tune the model by retraining it for 

a determined number of epochs.  
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A greedy layer-wise approach applies to layer i+1. This 

process will continue until .  

Before the final pruning stage, the sensitivity analysis should 

be performed on each layer. The accuracy values from the 

sweeping are used to determine which pruning order would be 

well-fit and which pruning rate would be adequate for each 

layer. 

Pruning Scheduling: In the proposed pruning schedule 

algorithm, the final pruning rate s for each layer has 

determined according to ℓ2 norm criteria. We will perform a 

sweep to characterize every layer going from Pmin = 0.1 to 

Pmax = 0.9 with a step size of 0.1. As a result, only Ni+1 x Pi 

among the Ni+1 channels will be removed, meaning that the 

final number of output channels in the layer i will be Ni+1 x (1 

- Pi). 

To characterize individual layers, we keep changing the 

pruning rate from Pmin to Pmax until all corresponding 

accuracy values are available from pruning each layer. Once 

the sweep has done, enough information will be ready to 

apply Algorithm 1. The algorithm aims to achieve the 

maximum compression rate of the model while minimizing 

the accuracy loss. It is necessary to set a different pruning rate 

for each layer.  

 In Algorithm 1, we compare the accuracy result from 

pruning a layer of the model with a specific Pi to baseline 

accuracy of the original model. The threshold value is 

multiplied by a factor from 0.985 to 0.997 depending on the 

model and dataset to avoid excessively restrictive algorithms. 

These values are determined experimentally to balance the 

trade-off between accuracy and compression results. The 

original accuracy multiplied by this factor is what we 

consider the threshold. If the accuracy of any layer is lower 

than the threshold, pruning will not apply to the layer. If the 

threshold is set too low, the accuracy will be significantly 

lower compared to the original, while the compression rate of 

the model will be high. However, if the threshold is set too 

high, the testing accuracy of the new model will also be 

higher, but the compression rate will drop. Several 

experiments have performed with two different models. We 

observe that the threshold should be closer to the original 

accuracy to obtain high accuracy in the final model. It occurs 

when the model has more layers to be pruned, and retrained 

loss in the final model is likely to accumulate and be higher. 

That is why the AlexNet compression rate is higher than in 

VGG16. 

Applying Algorithm 1, we obtain the maximum pruning 

rate to make every layer have the same accuracy or higher 

than the threshold. Based on individual layers' accuracy, 

layers has arranged by descending order.  

With the results obtained from Algorithm 1, we can 

proceed to the final pruning of the model. The process is the 

same as in sweeping, but now we have a fixed pruning rate 

for every layer based on the analysis of their pruning 

sensitivity. After pruning one layer, we retrain the model for 

several epochs. The order for pruning the layers will not be 

sequential but specified by the pruning schedule. This way, 

layers that individually achieve the highest accuracies were 

pruned first. Since previous retraining provides performance 

improvement, pruning should apply to the layers with 

relatively poor performance. We observe that changing the 

order of the layers in the pruning schedule can cause a faster 

convergence, requiring fewer epochs during retraining to 

achieve better accuracy results in the final model. When the 

pruning applies to all the selected layers in the specified order, 

we can consider that the new and efficient network model is 

produced and ready for testing or inference.  

Algorithm 1: Order and  for Convolutional Layers 

Input: A list of test accuracies and corresponding pruning rate for each layer; 

A list of convolutional layers in the model.  

Output: Ordered list of convolutional layers and the .  

1.  for each l in [1, L] do: 

2.   for each  in [  do: 

3.     if testing accuracy ≥ threshold: 

4.      layer, pruning rate  l,   

5.     else: 

6.       layer, pruning rate not found 

7.      end 

8.  end 

9.  Layers’ order and pruning rate according to the highest 

     accuracy 

Quantization: In CNNs, fully connected (FC) layers have 

many parameters. Therefore, parameter reduction of FC 

layers is becoming essential if maximized compression is 

required. If the pruning scheduling algorithm, used in 

convolutional layers, is applied with pruning neurons in FC 

layers, it is possible to lose the accuracy. An alternative is 

using quantization to reduce the number of bits for 

representing parameters.  

In CNNs, weights can be represented with 32-bit floating 

point numbers, while the most common form of quantization 

is into 8-bit integers. Also, hardware support for INT8 

computations is 2 to 4 times faster than FP32 compute [18]. 

We are applying a dynamic quantization with the Pytorch 

[19] library that converts only weights to INT8. It is a 

post-training quantization method since the model uses FP32 

for training before quantizing it. By default, this method can 

apply to layers like the fully connected layers of a CNN 

model. There is a slight loss of accuracy in testing, but it is 

not comparable when it is s necessary to retrain the network 

with pruning.  

V. EXPERIMENTS AND RESULTS 

A. Experiments and Analysis for A2E 

Applications and Dataset: The applications for 

autoencoders explored in this paper involve anomaly 

detection that translates to detecting fraudulent credit card 

transactions and recognizing handwritten digits. The datasets 

are 'Credit Card Fraud Detection' from Kaggle and 'MNIST' 

version 3.0.1 from Tensorflow/Keras, respectively. For the 

Credit Card Dataset: Models were trained to reconstruct the 

29 features of only the clean dataset. The dataset was reduced 

to 29 unlabeled fields using PCA [18]. For testing to classify 

either fraud or clean, the mean absolute deviation (MAD) 

score was used [20]. Since the model has trained on clean 

data, it should have trouble reconstructing the fraud data that 

provides a noticeably higher loss. It is an unsupervised 

approach. Table I shows the information for the fraud dataset.  

Table II shows the information for the MNIST dataset, 

where MNIST image classification used a standard approach.  

We fixed the output layer of the model to ten nodes - one 

for each classification category.  
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The softmax was used with argmax to determine the 

classification categories.  

 Table 1: Characteristics of Credit Card Fraud Database 

Characteristics Count 

Total transactions 84,807 

Total fraud transactions 492 

Number of features 29 

Table 2: Characteristics of MNIST Database 

Characteristics Count 

Train images 60,000 

Test images 10,000 

Number of features 784 

A2E architectures: As mentioned in Section IV, the A2E 

architecture for credit card fraud detection is [4-2-6-2-6-2-4]. 

It has the same number of layers as the baseline architecture. 

We updated the number of nodes at Layer 1-7 pair, Layer 2-6 

pair, and Layer 3-5 pair while the latent space remained the 

same. The number of nodes is small enough, and based on the 

sensitivity analysis, we could not see any big performance 

difference. For the MNIST classification, we use a 5-layer 

autoencoder [128-64-32-64-128] as the baseline autoencoder 

architecture [8]. The network needs a relatively large number 

of nodes in each layer to perform well due to the input size of 

784 (28x28). Based on the sensitivity analysis of 

performance vs. the number of nodes in each layer, all 

performance numbers are similar, and it is hard to find an 

optimal architecture. Therefore, we perform the sensitivity 

analysis by directly changing the number of nodes and 

making an A2E architecture by switching the number of 

nodes in Layers 1-2 and in Layers 4-5. Table III shows the 

performance comparison of AE and A2E. We observe that the 

complexity is reduced by 43%~49% while the accuracy is 

dropped by 0.3%~5.0%, as shown in Table III. Considering a 

4.9% accuracy drop compared to the performance of the 

baseline AE, the effectively performing architecture for 

MNIST classification is [8-16-4-16-8] structure providing a 

94.5% reduction in complexity. We exclude the last case with 

[4-8-2-8-4] because it shows an accuracy drop [21]. 

Accuracy and network size comparison: We apply the 

accordion autoencoder, which has multiple compressions and 

decompressions for annealing the features to reduce the 

reconstruction error, to two applications mentioned in the 

previous subsection and measures the performance 

(accuracy). Figure 8 compares the accuracy and complexity 

of AE and A2E on credit card fraud detection and MNIST 

classification. Our results show 13.6% and 4.9% 

performance drops, respectively, but we observe a reduction 

in network complexity, 85.1% and 94.5% for each 

application. 

Table 3: Node Sensitivity Analysis: AE vs. A2E 

        Performance        

                Metrics 

 

 

Autoencoder 

vs. Accordion AE L
o

ss
 

A
cc

u
ra

cy
 

P
re

ci
si

o
n
 

R
ec

al
l 

F
1

-s
co

re
 

C
o

m
p

le
x

it
y
 

128-64-32-64-128 0.09 0.97 0.97 0.97 0.97 122,538 

64-128-32-128-64 0.09 0.97 0.97 0.97 0.97   75,818 

64-32-16-32-64 0.10 0.97 0.96 0.96 0.96   56,154 

32-64-16-64-32 1.12 0.96 0.96 0.96 0.96   31,770 

16-8-4-8-16 0.22 0.94 0.94 0.94 0.94   13,086 

8-16-4-16-8 0.26 0.92 0.92 0.92 0.92     6,798 

8-4-2-4-8 0.46 0.88 0.89 0.88 0.88     6,468 

4-8-2-8-4 0.59 0.84 0.84 0.84 0.84     3,308 

Implications: The latent space in the autoencoders has 

condensed information from the input through multiple 

dimension reduction layers, and the latent space information 

is becoming more meaningful through the iterative decoding 

and encoding processes in deep autoencoders. The latent 

space can be a feature space. The proposed A2E architecture 

has multiple latent spaces through repeated decoding and 

encoding processes. Information propagates from feature 

spaces into the A2E network, which will help reduce the 

reconstruction loss even with lower complexity and trainable 

parameters. 

B.  Experiments and Analysis for DNNs 

Two different models, the AlexNet and the VGG16, are 

used for layer characterizations with CIFAR-10 and 

CIFAR-100. 

 

AlexNet with Cifar-10 and Cifar-100: The threshold 

factor used in the pruning schedule algorithm for both 

datasets is 0.985. As expected, conv4 remains unpruned 

because no accuracy value is above the threshold. The model 

will be retrained for 20 epochs while pruning every layer. 

Table IV shows the algorithm results obtained for AlexNet 

using CIFAR-10 and CIFAR-100. Table V shows the 

accuracy and compression results of the proposed method. 

We see that the final accuracy of the pruned model using our 

method is higher than using a sequential order. Results for 

testing the accuracy of the final model are the mean of three 

different runs, so it could be certified that there was a higher 

accuracy tendency when changing the order. Due to the filter 

pruning, the model performance can be reduced in floating 

point operations per second (FLOPs). Also, by applying 

quantization in fully connected layers, the reduction in 

parameter size goes up to 47.28x compared to the original 

model [22][23][24][25][26][27].  

 

 

[Fig.8: Performance Comparison: AE vs. A2E] 

Table 4: Proposed Layer Order and Pruning Rate 

Model Dataset 
Order of 

Conv.Layers 
Pruning rate 

AlexNet 
CIFAR-10 [3,1,0,2] [0.4,0.1,0.1,0.4] 

CIFAR-100 [3,2,1,0] [0.2,0.3,0.3,0.1] 
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Table 5: Accuracy and Compression Results of the 

Accuracy-Aware Method 

Baseline 

        Model Dataset Accuracy (%) 
PS 

(MB) 

FLOPs 

        (E6) 

AlexNet 
CIFAR-1

0 
92.19 

61.10 

710.63 

 CIFAR-1

00 

72.86 
 

Accuracy-Aware Pruning Method 

Original 

Model 

Datas

et 

Order 

Conv 

Acc. (%) 

(Accuracy 

drop) 

PS 

(MB) 

FLOPs 

(E6) 

AlexNet 

CIFA
R-10 

O-O-O 
91.85 

(▼ 0.34%) 
4.93 

(PC: 

47.28x) 

414.94   

(FC: 

1.72x) 
 

Seq. 
91.04 

(▼ 1.15%) 
 

CIFA
R-100 

O-O-O 
72.50 

(▼ 0.36%) 
 

5.71 
(PC: 

40.82x) 

 

419.39 

(FC: 
1.69x) 

Seq. 
72.08 

(▼ 0.78%) 
 

    * PS: Parameter Size; PC: Parameter size Compression; 

FC: FLOPs compression; OOO: Out-of-Order 

VGG16 with CIFAR-10 and CIFAR-100: We also apply 

our method to deeper networks to analyze its performance in 

more complex architectures. In this case, the threshold factor 

is 0.99 for CIFAR-10 and 0.997 for CIFAR-100. As observed 

in the case of AlexNet, pruning will be applied to the last 

layer because it would damage the performance of the final 

model. The model has tuned for five epochs after pruning 

each layer. Table VI presents the results of the pruning 

schedule algorithm, and Table VII shows the accuracy and 

compression of the pruned model. 

Table 6: Proposed Layer Order and Pruning Rate 

Model Dataset 
Order of Conv. 

Layers 
Pruning Rate 

VGG16 

CIFAR-10 
[0, 1, 9, 11, 6, 4, 

5, 8, 2, 3, 7, 10] 

[0.8, 0.5, 0.4, 0.6, 
0.5, 0.8, 0.6, 0.5, 

0.8, 0.5, 0.5, 0.5] 

CIFAR-100 
[6, 1, 2, 0, 4, 8, 

9, 11, 7, 3, 5, 10] 

[0.3, 0.5, 0.7, 0.8, 
0.4, 0.3, 0.1, 0.3, 

0.5, 0.7, 0.5, 0.4] 

Table 7: Accuracy and Compression Results of the 

Accuracy-Aware Method 

Baseline 

Model Dataset Accuracy (%) 
PS 

(MB) 

FLOPs 

(E6) 

VGG16 
CIFAR-10 92.81 527.7

9 
15.48 

CIFAR-100 74.09 

 
Accuracy-Aware Pruning Method 

Original 

Model 
Dataset 

Order 

Conv 

Acc. (%) 

(Accuracy 

drop) 

PS 

(MB) 

FLOPs 

(E6) 

VGG16 

CIFAR-1

0 

O-O-O 
92.48 

(▼ 0.33%) 
3.93 
(PC: 

35.21
x) 

   

   2.74 
(FC: 

5.66x) 

 

Seq. 
 

91.15 
(▼ 1.66%) 

CIFAR-1

00 

O-O-O 
72.80 

(▼ 1.29%) 

 

7.09 

(PC: 
19.50

x) 

 

4.76 

(FC: 
3.25x) 

 
Seq. 

72.28 

(▼ 1.81%) 

    * PS: Parameter Size; PC: Parameter size Compression; 

FC: FLOPs compression; OOO: Out-of-Order 

VGG16 with Cifar-10 and Cifar-100: The graph in 

Figure 9 represents the training accuracy of the model after 

pruning one layer at a time and training the model for five 

epochs. When applying our method, the last layer provides a 

slightly higher accuracy than the final layers in the existing 

sequential order. These performance changes can explain the 

differences in the final accuracy of the pruned model.  

 

 
 

[Fig.9: Pruning Performance Comparison: Original 

Order vs. Out-of-Order] 

VI. CONCLUSION 

Deep neural networks (DNNs) have several technical issues 

as the network size gets more complex. Those issues include 

computational complexity, redundancy, and parameter size. 

Many parameters require high memory capacity. That might 

cause migration problems to embedded devices. Many 

pruning techniques are applied to reduce the network size in 

deep neural networks, but various issues still exist when 

DNNs apply the pruning techniques. 

Several applications use autoencoders among neural 

networks, including dimensionality reduction, data 

reconstruction, anomaly detection, and classification 

problems. On the other hand, autoencoders are not used in 

practical data compression problems because modern 

algorithms perform better without the required training. It 

would also be impractical to gather a dataset for each 

compression application because the autoencoder provides 

performance less on transfer learning. Also, network size is a 

disadvantage of autoencoders. The architecture of the 

autoencoders has a double workload due to the encoding and 

decoding processes. In this research, we choose autoencoders 

and two deep neural networks – AlexNet and VGG16. We 

perform the sensitivity analysis to explore the performance 

variations for the network architecture and network 

complexity through an out-of-order layer pruning 

mechanism. 

Accordion AutoEncoder (A2E) provides good performance 

because it has multiple compressions and decompressions for 

annealing the features to reduce the reconstruction error and 

for credit card fraud detection and MNIST classification and 

measure the performance (accuracy). Our results show 4.9% 

and 13.6% performance drops, respectively, but we observe a 

reduction in network complexity, 85.1% and 94.5% for each 

application.  
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We extend the out-of-order layer pruning to deeper learning 

networks. Various research proposes methodologies to 

reduce the complexity. In our approach, we propose a simple 

yet efficient scheme, accuracy-aware structured filter pruning 

based on the characterization of each convolutional layer 

combined with the quantization of fully connected layers. We 

investigate the accuracy and compression rate of each layer 

using a fixed pruning ratio and reorder the pruning priority 

depending on the accuracy of each layer. Our analysis of 

layer characterization shows that the pruning order of the 

layers does affect the final accuracy of the deep neural 

network. Based on our experiments using the proposed 

pruning scheme, the parameter size can be reduced up to 

47.28 times in AlexNet compared to the original model. 

Similar results are also obtained with VGG16, achieving a 

maximum compression rate of 35.21x. 

For the future work, we will optimize pruning and 

compression rates while maintaining overall performance. 

Also, it will be meaningful work to apply our method to much 

deeper architectures. 
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