
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307 (Online), Volume-14 Issue-5, November 2024

20

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.E365014051124
DOI: 10.35940/ijsce.E3650.14051124
Journal Website: www.ijsce.org

Abstract: Deep neural networks (DNNs) have technical issues

such as long training time as the network size increases.

Parameters require significant memory, which may cause

migration issues for embedded devices. DNNs applied various

pruning techniques to reduce the network size in deep neural

networks, but many problems still exist when applying the pruning

techniques. Among neural networks, several applications applied

autoencoders for reconstruction and dimension reduction.

However, network size is a disadvantage of autoencoders since the

architecture of the autoencoders has a double workload due to the

encoding and decoding processes. In this research, we chose

autoencoders and two deep neural networks – AlexNet and

VGG16 to apply out-of-order layer pruning. We perform the

sensitivity analysis to explore the performance variations for the

network architecture and network complexity through an

out-of-order layer pruning mechanism. As a result of applying the

proposed layer pruning scheme to the autoencoder, we developed

the accordion autoencoder (A2E) and applied credit card fraud

detection and MNIST classification. Our results show 4.9% and

13.6% performance drops, respectively, but we observe a

significant reduction in network complexity, 85.1% and 94.5% for

each application. We extend the out-of-order layer pruning to

deeper learning networks. In our approach, we propose a simple

yet efficient scheme, accuracy-aware structured filter pruning

based on the characterization of each convolutional layer

combined with the quantization of fully connected layers. We

investigate the accuracy and compression rate of each layer using

a fixed pruning ratio, and then the pruning priority is rearranged

depending on the accuracy of each layer. Our analysis of layer

characterization shows that the pruning order of the layers does

affect the final accuracy of the deep neural network. Based on our

experiments using the proposed pruning scheme, the parameter

size in the AlexNet can be up to 47.28x smaller than the original

model. We also obtained comparable results for VGG16,

achieving a maximum compression rate of 35.21x.

Keywords: Deep Neural Network; Machine Learning; Filter

pruning; Network Compression; Layer Pruning.

Manuscript received on 25 September 2024 | Revised

Manuscript received on 14 October 2024 | Manuscript Accepted

on 15 November 2024 | Manuscript published on 30 November

2024.
*Correspondence Author(s)

Shafayat Mowla Anik, Department of Electrical and Computer
Engineering, University of Colorado Colorado Springs, 1420 Austin Bluffs

Parkway, Colorado Springs, USA. Email: sanik@uccs.edu,

Kevyn Kelso, Department of Electrical and Computer Engineering,
University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway,

Colorado Springs, USA. Email: kkelso@uccs.edu,
Byeong Kil Lee*, Department of Electrical and Computer Engineering,

University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway,

Colorado Springs, USA. Email: blee@uccs.edu. ORCID ID:
0000-0002-0260-2238

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

I. INTRODUCTION

Deep neural networks (DNNs) require huge

computational workloads with large memory capacity to train

weight values in deeper layers and conduct inference

operations. Also, large-scale DNNs are hard to apply to

embedded devices with limited computational resources. To

resolve those issues, model compression techniques (e.g.,

pruning and quantization) for neural networks have been

proposed to reduce the model redundancy without

significantly degrading accuracy and performance.

Several applications applied autoencoders for

dimensionality reduction, data reconstruction, anomaly

detection, and classification. For dimensionality reduction,

the lower dimension of data can generalize sets of higher

dimensions that provide intuitive features. In modern

applications, generative models use lower dimensional latent

spaces to change the features of the output. Also,

autoencoders have been used in quantum data compression

problems [1]. However, autoencoders are not used in

practical data compression because other modern algorithms

perform better without the required training. It would also be

impractical to gather a dataset for each compression

application because the autoencoder networks are not

performing well on dataset transfer learning. This lack of

dataset flexibility is one of the main reasons that

autoencoders are one of the potential candidates for anomaly

detection. Once the autoencoder network has trained with a

particular dataset, any data fed through the network slightly

outside the training dataset results in a high reconstruction

loss. However, network size is a disadvantage of

autoencoders since the architecture of the autoencoders has a

double workload due to the encoding and decoding

processes.

As the first application for layer characterization and layer

optimization, in this paper, we select autoencoders to perform

the sensitivity analysis to explore the performance variations

for the network architecture and the network complexity

through an out-of-order layer pruning mechanism. The

motivation behind exploring different autoencoder

architectures is their practical uses for applications such as

anomaly detection, classification, and other usages in

generative models generating novel output using the latent

space in the autoencoder. Additionally, understanding the

mechanism to improve dimensionality reduction may help in

understanding the behaviors of the human brain.

We extend the out-of-order layer optimization to deeper

learning networks.

Efficient Layer Optimizations for Deep Neural

Networks

Shafayat Mowla Anik, Kevyn Kelso, Byeong Kil Lee

http://doi.org/10.35940/ijsce.E3650.14051124
http://doi.org/10.35940/ijsce.E3650.14051124
http://www.ijsce.org/
mailto:sanik@uccs.edu
mailto:kkelso@uccs.edu
mailto:blee@uccs.edu
https://orcid.org/0000-0002-0260-2238
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijsce.E3650.14051124&domain=www.ijsce.org

Efficient Layer Optimizations for Deep Neural Networks

21

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.E365014051124
DOI: 10.35940/ijsce.E3650.14051124
Journal Website: www.ijsce.org

The computational complexity of the network depends on

the effectiveness of the pruning algorithm used in identifying

and preserving the essential information from the original

network. Various research proposes to reduce the complexity

of workloads. In our approach, we develop a simple and

accuracy-aware structured filter pruning based on the

characterization of each convolutional layer combined with

the quantization of fully connected layers. Among various

pruning schemes, filter pruning is a naturally structured prune

method without introducing sparsity. Therefore, it does not

require sparse libraries or specialized hardware [2]. We

investigate the accuracy and compression rate of each layer

using a fixed pruning ratio, and the pruning priority is

rearranged based on the accuracy of each layer. Our analysis

of layer characterization shows that the pruning order of the

layers does affect the final accuracy of the deep neural

network. Based on our experiments using the proposed

pruning scheme, the parameter size of AlexNet can be

reduced up to 47.28x compared to the original model with an

accuracy loss of less than 1%. Similar results are also

obtained with VGG16, achieving a maximum compression

rate of 35.21x.

The rest of the paper has organized as follows. In Section II,

we describe related work. Section III describes the layer

characterization of autoencoders and DNNs. Section IV

describes the proposed out-of-order layer pruning method

and experimental results. In Section V, we describe the

obtained results and analyze them. Finally, we conclude in

Section VI.

II. RELATED WORK

Tirumala [3] introduced a simple pruning strategy in that all

connections with weights below a threshold are excluded

from training to reduce computational workloads. This

process had to be followed by fine-tuning to recover the

accuracy lost by eliminating weights. To avoid the limitations

of non-structured pruning, other papers [4] and [5] argued

that filter-level pruning could be a better option. In [4], a

compressed model proposes to prune the unimportant filters

of CNN models in both training and testing stages, providing

performance acceleration and network compression. Also, in

[5], Luo studied the effect of pruning sensitivity to decide the

pruning rate for the different convolutional layers. For further

compression, some research works have implemented

post-training quantization after pruning. In [6], the model

size has reduced with three stages of the compression

pipeline: weight pruning, quantization, and Huffman coding.

However, one noticeable problem when using pruning is the

large number of epochs required for retraining the model

after pruning. In our approach, we will introduce one

parameter: the retraining order of the layers. We will show

how this parameter can affect the fine-tuning process and the

accuracy with a smaller number of epochs.

III. LAYER CHARACTERIZATION

A. Implementation of Pruning

An autoencoder is a fully connected neural network that

compresses the input into a smaller and more meaningful

representation and then decodes that representation into an

output resembling the original input [7]. Usually, decreasing

the dimensionality of the input is the goal of the autoencoder.

Generally, the autoencoder learns distinguishable attributes

of the data represented in the latent space. The latent space is

a lower-dimensional vector and the smallest middle layer.

These attributes tend to be generalizations of the data

representing one or many features in the input. The latent

attributes can sometimes resemble the results of principal

component analysis (PCA) but often perform better due to the

nonlinearity of the encoder and decoder layers [8][9]. Figure

1 shows the architecture of autoencoders with two encoding

processes, two decoding processes, and one latent space.

We use Tensorflow 2 with Keras to implement all network

models. For the performance metrics, we use the F1 score,

recall, precision, accuracy, loss, and complexity for the

autoencoder. Two applications are used for the experiments,

including anomaly detection in credit card transaction data

and image classification using the MNIST dataset [10][11].

Generally, precision is a relevance-based metric based on a

percentage of correctly predicted or classified instances, and

recall is the percentage of retrieved instances. One could

classify all instances as one category and have 100% recall

but with 0% precision. A problem-specific balance between

the two is optimal for best performance. The F1 score is the

harmonic mean between precision and recall. Also, the F1

score is considered the primary performance metric for both

datasets. The F1 score has adjustable weights to show the

importance of precision versus recall. To keep things simple

and maintain the F1 score meaningful between datasets,

precision and recall are equally weighted in the F1 score for

all results.

Input data Reconstructed
data

Latent
space

Encoder Decoder

[Fig. 1: The Architecture of Autoencoder [8-4-2-4-8]]

There is no established standard for autoencoder

architecture for classification or anomaly detection. For

characterizing the autoencoder network in this research, we

use the architecture [16-8-4-2-4-8-16] as a baseline

architecture [10]. The first layer of the baseline autoencoder's

encoding module has 16 nodes, contributing to the model's

complexity. One of the goals of this research is to reduce

network complexity. We perform the performance sensitivity

analysis by changing the number of nodes in the first layer (at

the encoding side) and the seventh layer (at the decoding

side) to preserve the symmetry of the architecture. Figure 2

(a) shows the performance (F1 score) sensitivities for Layer 1

and 7.

http://doi.org/10.35940/ijsce.E3650.14051124
http://doi.org/10.35940/ijsce.E3650.14051124
http://www.ijsce.org/

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307 (Online), Volume-14 Issue-5, November 2024

22

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.E365014051124
DOI: 10.35940/ijsce.E3650.14051124
Journal Website: www.ijsce.org

Based on our observation of sensitivity analysis, we

observe notable improvement with the smaller number of

nodes rather than the larger ones. If we reduce the number of

nodes of Layer 1 into Layer 4, we can get better performance

(37.5% improvement) and lower complexity (41.5%

reduction). The performance can vary in other applications or

datasets, but our results from the sensitivity analysis led us to

further characterization and performance evaluation.

(a)

(b)

[Fig.2: Performance Sensitivity Analysis: F1 Score vs. the

Number of Nodes in Layer 1-7 Pair and 2-6 Pair: (a) Layer 1

and Layer 7 variations (Layer 16 is the Original Node with

Green Bar); (b) Layer 2 and Layer 6 Variations (Layer 8 is the

Original Node with Green Bar)]

In the second step, after changing the number of nodes in

Layer 2 and Layer 6 while maintaining four nodes in Layer 1

and Layer 7, we observe the performance variations. Based

on the results from the experiments, 2 is the best-performing

number of nodes for layers 2 and 6 in terms of the F1 score

shown in Figure 2 (b). As the next step for layers 3 and 5, we

observe that the best number of nodes is six from

performance (F1 score) based on the sensitivity analysis

shown in Figure 3 (a). As a final step, we change the number

of nodes in the latent space to see the performance variations.

However, distinct performance improvement has not

observed from the sensitivity analysis. As shown in Figure 3

(b), performance variations are limited, and the original

number of nodes is among the best performance groups.

 The sensitivity analysis performs on a specific application

with the dataset. It is hard to say the scheme we used for

extracting the best-performing number of nodes is a general

solution. However, it provides meaningful results where

some performance numbers (F1 score, precision, complexity,

and recall) are improved while the accuracy number is

marginally dropped (13.6%). Based on our analysis, accuracy

has some inverse relationships to the F1 classification metrics,

where, up to a threshold, lower accuracy scores provide

improved F1, precision, and recall scores.

(a)

http://doi.org/10.35940/ijsce.E3650.14051124
http://doi.org/10.35940/ijsce.E3650.14051124
http://www.ijsce.org/

Efficient Layer Optimizations for Deep Neural Networks

23

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.E365014051124
DOI: 10.35940/ijsce.E3650.14051124
Journal Website: www.ijsce.org

(b)

[Fig.3: Performance Sensitivity Analysis: F1 Score vs. the

Number of Nodes in Layer 3-5 Pair and the Latent Space: (a)

Layer 3 and Layer 5 variations (Layer 4 is the Original Node

with Green Bar); (b) The Latent Space Variations (Layer 2 is

the Original Node with Green Bar)]

B. Layer Characterization of DNNs

We perform the layer characterization in two different

models: AlexNet and VGG16 [12][13]. The two datasets

chosen are CIFAR-10 and CIFAR-100 [14][15]. CIFAR-10

consists of 60,000 images that belong to 10 different classes.

50,000 images are used for training and 1,000 for testing.

CIFAR-100 is another version of CIFAR-10 with the same

number of images, but it contains 100 classes instead of 10.

Pytorch [16] has used to conduct the proposed experiments.

Transfer learning is applied as both CNN architectures are

previously pre-trained with the ImageNet [17] dataset. We

used a batch size of 64, a learning rate 0.001, and SGD as the

optimizer. As for the hardware, all experiments has done with

NVIDIA Quadro P6000.

AlexNet with CIFAR-10 and CIFAR-100: Our first DNN

characterizations are pruning AlexNet with CIFAR-10 and

CIFAR-100. AlexNet has five convolutional layers: conv0 to

conv4. As a first step, we applied the pruning sensitivity

sweep for both datasets separately. Figure 4 shows pruning

results with CIFAR-10. It is noticeable that the accuracy for

convolutional layer 4 starts at a lower point than the rest of

the layers and does not go over 0.9 in all the sweeps.

(a)

(b)

[Fig.4: AlexNet Pruning Sweep Using CIFAR-10 and

CIFAR-100: (a) Accuracy for Pruning Sweep with

CIFAR-10; (b) Accuracy for Pruning Sweep with

CIFAR-100]

VGG16 with CIFAR-10 and CIFAR-100: We also apply

our method to deeper networks to analyze its performance in

more complex architectures. Figure 5 shows the pruning

sweep of VGG16 using CIFAR-100. In this case, the

threshold factor is 0.99 for CIFAR-10 and 0.997 for

CIFAR-100. Likewise, with AlexNet, the pruning is not

applied to the last convolutional layer because it would

damage the performance of the final model. The model has

retrained with five epochs after pruning each layer.

IV. OUT-OF-ORDER LAYER PRUNING

A. Accordion Autoencoders (A2E)

Generally, the architecture of the autoencoders has two

parts – the down-sampling part (encoding) and up-sampling

(decoding). The complexity is monotonically decreased and

increased throughout the process. Based on our sensitivity

analysis of fraud detection cases, the extracted

best-performing architecture [4-2-6-2-6-2-4] does not have

the feature of monotonicity. The number of nodes in each

layer is up and down. We name it accordion autoencoders

(A2E) because the shape of the architecture is similar to the

accordion, as shown in Figure 6. In computer vision, the

pyramid representation, a multi-scale image data

representation, is used to extract the features through

subsampling.

http://doi.org/10.35940/ijsce.E3650.14051124
http://doi.org/10.35940/ijsce.E3650.14051124
http://www.ijsce.org/

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307 (Online), Volume-14 Issue-5, November 2024

24

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.E365014051124
DOI: 10.35940/ijsce.E3650.14051124
Journal Website: www.ijsce.org

In autoencoders, we can extract features from the first layer.

Those features are typically lower dimensions than the input

size. Then, as in accordion autoencoders, if we increase the

dimension from the subsampled data in the second layer,

many meaningful features will be lost or deformed. However,

we can keep the features through the iterative cost reduction

in deep learning, and the output images have been used for

another dimension reduction and feature extraction. The

accordion architecture will anneal the features through the

dimension up/downs and the iterative optimizations.

(a)

(b)

[Fig.5: VGG16 Pruning Sweep using CIFAR-10 and

CIFAR-100 (Convolution layers 0-12): (a) Accuracy for

Pruning Sweep with CIFAR-10; (b) Accuracy for

Pruning Sweep with CIFAR-100]

Input data Reconstructed
data

Latent
space

Encoder Decoder

[Fig.6: The Accordion Autoencoder (A2E) [N-4-6-2-6-4-N]]

The general concept of the accordion autoencoder is that

data gets compressed and decompressed multiple times to get

more meaningful features recorded at each compression stage.

Essentially, it is an extension of the ability of the classic

autoencoder to record meaningful features due to the memory

capacity in the expansion layers immediately following each

latent space layer. Presumably, the most meaningful features

will end up in the last latent space after being 'autoencoded'

several times to ensure only features that affect the

reconstruction loss.

B. Out-of-order Layer Pruning for DNNs

Firstly, we describe the filter pruning technique used for

initial compression through characterizing individual layers.

Then, we explain how the pruning rate and the order of the

layers are selected. Finally, we use quantization in fully

connected layers to achieve further compression while

maintaining the model's accuracy. Figure 7 shows the overall

flow of the proposed approach.
Pre-trained
CNN Model

Filter Pruning
Sweep

Pruning Schedule
[Algorithm 1]

Filter Selection

Prune Layer

Fine-tune Model

All Layers Pruned?

Quantization

Final Pruned
Model

Yes

No

[Fig.7: Overall Flow of DNN Out-of-Order Layer

Pruning]

We consider a CNN network with L convolutional layers.

The weight matrix in each layer, , can be expressed as

 where Ni denotes the number of input

channels of the convolutional layer i and Ni+1 next layer's

input channels. The number of input channels is the same as

the number of output channels for the layer i. The constant k

represents the kernel dimension, considering that height and

width are the same. We denote the kernel as .

Every filter in layer can be expressed as .

The Pi is the pruning rate for each layer.

The first step of the proposed method is applying filter

pruning. The process consists of identifying those filters

considered unimportant or redundant. The importance of the

filters needs to be evaluated according to a criterion to identify

the redundant filters. After evaluation of different norms

through our experiments, we select ℓ2 norm, also known as the

Euclidean norm, as a criterion:

 … (1)

Evaluating each layer of the CNN model, we can rank the

filters by assuming the ones with a smaller norm will lead to

lower activation values and less impact in the final

classification. Filter selection for every layer using pruning

with ℓ2 norm can be formulated mathematically as:

 (2)

s.t

S represents a subset of all the possible output channels. N(S)

is the total number of elements in the S. The S is the number

of filters that need pruning. After pruning the selected filters

in the layers , we will fine-tune the model by retraining it for

a determined number of epochs.

http://doi.org/10.35940/ijsce.E3650.14051124
http://doi.org/10.35940/ijsce.E3650.14051124
http://www.ijsce.org/

Efficient Layer Optimizations for Deep Neural Networks

25

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.E365014051124
DOI: 10.35940/ijsce.E3650.14051124
Journal Website: www.ijsce.org

A greedy layer-wise approach applies to layer i+1. This

process will continue until .

Before the final pruning stage, the sensitivity analysis should

be performed on each layer. The accuracy values from the

sweeping are used to determine which pruning order would be

well-fit and which pruning rate would be adequate for each

layer.

Pruning Scheduling: In the proposed pruning schedule

algorithm, the final pruning rate s for each layer has

determined according to ℓ2 norm criteria. We will perform a

sweep to characterize every layer going from Pmin = 0.1 to

Pmax = 0.9 with a step size of 0.1. As a result, only Ni+1 x Pi

among the Ni+1 channels will be removed, meaning that the

final number of output channels in the layer i will be Ni+1 x (1

- Pi).

To characterize individual layers, we keep changing the

pruning rate from Pmin to Pmax until all corresponding

accuracy values are available from pruning each layer. Once

the sweep has done, enough information will be ready to

apply Algorithm 1. The algorithm aims to achieve the

maximum compression rate of the model while minimizing

the accuracy loss. It is necessary to set a different pruning rate

for each layer.

 In Algorithm 1, we compare the accuracy result from

pruning a layer of the model with a specific Pi to baseline

accuracy of the original model. The threshold value is

multiplied by a factor from 0.985 to 0.997 depending on the

model and dataset to avoid excessively restrictive algorithms.

These values are determined experimentally to balance the

trade-off between accuracy and compression results. The

original accuracy multiplied by this factor is what we

consider the threshold. If the accuracy of any layer is lower

than the threshold, pruning will not apply to the layer. If the

threshold is set too low, the accuracy will be significantly

lower compared to the original, while the compression rate of

the model will be high. However, if the threshold is set too

high, the testing accuracy of the new model will also be

higher, but the compression rate will drop. Several

experiments have performed with two different models. We

observe that the threshold should be closer to the original

accuracy to obtain high accuracy in the final model. It occurs

when the model has more layers to be pruned, and retrained

loss in the final model is likely to accumulate and be higher.

That is why the AlexNet compression rate is higher than in

VGG16.

Applying Algorithm 1, we obtain the maximum pruning

rate to make every layer have the same accuracy or higher

than the threshold. Based on individual layers' accuracy,

layers has arranged by descending order.

With the results obtained from Algorithm 1, we can

proceed to the final pruning of the model. The process is the

same as in sweeping, but now we have a fixed pruning rate

for every layer based on the analysis of their pruning

sensitivity. After pruning one layer, we retrain the model for

several epochs. The order for pruning the layers will not be

sequential but specified by the pruning schedule. This way,

layers that individually achieve the highest accuracies were

pruned first. Since previous retraining provides performance

improvement, pruning should apply to the layers with

relatively poor performance. We observe that changing the

order of the layers in the pruning schedule can cause a faster

convergence, requiring fewer epochs during retraining to

achieve better accuracy results in the final model. When the

pruning applies to all the selected layers in the specified order,

we can consider that the new and efficient network model is

produced and ready for testing or inference.

Algorithm 1: Order and for Convolutional Layers

Input: A list of test accuracies and corresponding pruning rate for each layer;

A list of convolutional layers in the model.

Output: Ordered list of convolutional layers and the .

1. for each l in [1, L] do:

2. for each in [do:

3. if testing accuracy ≥ threshold:

4. layer, pruning rate l,

5. else:

6. layer, pruning rate not found

7. end

8. end

9. Layers’ order and pruning rate according to the highest

 accuracy

Quantization: In CNNs, fully connected (FC) layers have

many parameters. Therefore, parameter reduction of FC

layers is becoming essential if maximized compression is

required. If the pruning scheduling algorithm, used in

convolutional layers, is applied with pruning neurons in FC

layers, it is possible to lose the accuracy. An alternative is

using quantization to reduce the number of bits for

representing parameters.

In CNNs, weights can be represented with 32-bit floating

point numbers, while the most common form of quantization

is into 8-bit integers. Also, hardware support for INT8

computations is 2 to 4 times faster than FP32 compute [18].

We are applying a dynamic quantization with the Pytorch

[19] library that converts only weights to INT8. It is a

post-training quantization method since the model uses FP32

for training before quantizing it. By default, this method can

apply to layers like the fully connected layers of a CNN

model. There is a slight loss of accuracy in testing, but it is

not comparable when it is s necessary to retrain the network

with pruning.

V. EXPERIMENTS AND RESULTS

A. Experiments and Analysis for A2E

Applications and Dataset: The applications for

autoencoders explored in this paper involve anomaly

detection that translates to detecting fraudulent credit card

transactions and recognizing handwritten digits. The datasets

are 'Credit Card Fraud Detection' from Kaggle and 'MNIST'

version 3.0.1 from Tensorflow/Keras, respectively. For the

Credit Card Dataset: Models were trained to reconstruct the

29 features of only the clean dataset. The dataset was reduced

to 29 unlabeled fields using PCA [18]. For testing to classify

either fraud or clean, the mean absolute deviation (MAD)

score was used [20]. Since the model has trained on clean

data, it should have trouble reconstructing the fraud data that

provides a noticeably higher loss. It is an unsupervised

approach. Table I shows the information for the fraud dataset.

Table II shows the information for the MNIST dataset,

where MNIST image classification used a standard approach.

We fixed the output layer of the model to ten nodes - one

for each classification category.

http://doi.org/10.35940/ijsce.E3650.14051124
http://doi.org/10.35940/ijsce.E3650.14051124
http://www.ijsce.org/

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307 (Online), Volume-14 Issue-5, November 2024

26

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.E365014051124
DOI: 10.35940/ijsce.E3650.14051124
Journal Website: www.ijsce.org

The softmax was used with argmax to determine the

classification categories.

 Table 1: Characteristics of Credit Card Fraud Database

Characteristics Count

Total transactions 84,807

Total fraud transactions 492

Number of features 29

Table 2: Characteristics of MNIST Database

Characteristics Count

Train images 60,000

Test images 10,000

Number of features 784

A2E architectures: As mentioned in Section IV, the A2E

architecture for credit card fraud detection is [4-2-6-2-6-2-4].

It has the same number of layers as the baseline architecture.

We updated the number of nodes at Layer 1-7 pair, Layer 2-6

pair, and Layer 3-5 pair while the latent space remained the

same. The number of nodes is small enough, and based on the

sensitivity analysis, we could not see any big performance

difference. For the MNIST classification, we use a 5-layer

autoencoder [128-64-32-64-128] as the baseline autoencoder

architecture [8]. The network needs a relatively large number

of nodes in each layer to perform well due to the input size of

784 (28x28). Based on the sensitivity analysis of

performance vs. the number of nodes in each layer, all

performance numbers are similar, and it is hard to find an

optimal architecture. Therefore, we perform the sensitivity

analysis by directly changing the number of nodes and

making an A2E architecture by switching the number of

nodes in Layers 1-2 and in Layers 4-5. Table III shows the

performance comparison of AE and A2E. We observe that the

complexity is reduced by 43%~49% while the accuracy is

dropped by 0.3%~5.0%, as shown in Table III. Considering a

4.9% accuracy drop compared to the performance of the

baseline AE, the effectively performing architecture for

MNIST classification is [8-16-4-16-8] structure providing a

94.5% reduction in complexity. We exclude the last case with

[4-8-2-8-4] because it shows an accuracy drop [21].

Accuracy and network size comparison: We apply the

accordion autoencoder, which has multiple compressions and

decompressions for annealing the features to reduce the

reconstruction error, to two applications mentioned in the

previous subsection and measures the performance

(accuracy). Figure 8 compares the accuracy and complexity

of AE and A2E on credit card fraud detection and MNIST

classification. Our results show 13.6% and 4.9%

performance drops, respectively, but we observe a reduction

in network complexity, 85.1% and 94.5% for each

application.

Table 3: Node Sensitivity Analysis: AE vs. A2E

 Performance

 Metrics

Autoencoder

vs. Accordion AE L
o

ss

A
cc

u
ra

cy

P
re

ci
si

o
n

R
ec

al
l

F
1

-s
co

re

C
o

m
p

le
x

it
y

128-64-32-64-128 0.09 0.97 0.97 0.97 0.97 122,538

64-128-32-128-64 0.09 0.97 0.97 0.97 0.97 75,818

64-32-16-32-64 0.10 0.97 0.96 0.96 0.96 56,154

32-64-16-64-32 1.12 0.96 0.96 0.96 0.96 31,770

16-8-4-8-16 0.22 0.94 0.94 0.94 0.94 13,086

8-16-4-16-8 0.26 0.92 0.92 0.92 0.92 6,798

8-4-2-4-8 0.46 0.88 0.89 0.88 0.88 6,468

4-8-2-8-4 0.59 0.84 0.84 0.84 0.84 3,308

Implications: The latent space in the autoencoders has

condensed information from the input through multiple

dimension reduction layers, and the latent space information

is becoming more meaningful through the iterative decoding

and encoding processes in deep autoencoders. The latent

space can be a feature space. The proposed A2E architecture

has multiple latent spaces through repeated decoding and

encoding processes. Information propagates from feature

spaces into the A2E network, which will help reduce the

reconstruction loss even with lower complexity and trainable

parameters.

B. Experiments and Analysis for DNNs

Two different models, the AlexNet and the VGG16, are

used for layer characterizations with CIFAR-10 and

CIFAR-100.

AlexNet with Cifar-10 and Cifar-100: The threshold

factor used in the pruning schedule algorithm for both

datasets is 0.985. As expected, conv4 remains unpruned

because no accuracy value is above the threshold. The model

will be retrained for 20 epochs while pruning every layer.

Table IV shows the algorithm results obtained for AlexNet

using CIFAR-10 and CIFAR-100. Table V shows the

accuracy and compression results of the proposed method.

We see that the final accuracy of the pruned model using our

method is higher than using a sequential order. Results for

testing the accuracy of the final model are the mean of three

different runs, so it could be certified that there was a higher

accuracy tendency when changing the order. Due to the filter

pruning, the model performance can be reduced in floating

point operations per second (FLOPs). Also, by applying

quantization in fully connected layers, the reduction in

parameter size goes up to 47.28x compared to the original

model [22][23][24][25][26][27].

[Fig.8: Performance Comparison: AE vs. A2E]

Table 4: Proposed Layer Order and Pruning Rate

Model Dataset
Order of

Conv.Layers
Pruning rate

AlexNet
CIFAR-10 [3,1,0,2] [0.4,0.1,0.1,0.4]

CIFAR-100 [3,2,1,0] [0.2,0.3,0.3,0.1]

http://doi.org/10.35940/ijsce.E3650.14051124
http://doi.org/10.35940/ijsce.E3650.14051124
http://www.ijsce.org/

Efficient Layer Optimizations for Deep Neural Networks

27

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.E365014051124
DOI: 10.35940/ijsce.E3650.14051124
Journal Website: www.ijsce.org

Table 5: Accuracy and Compression Results of the

Accuracy-Aware Method

Baseline

 Model Dataset Accuracy (%)
PS

(MB)

FLOPs

 (E6)

AlexNet
CIFAR-1

0
92.19

61.10

710.63

 CIFAR-1

00

72.86

Accuracy-Aware Pruning Method

Original

Model

Datas

et

Order

Conv

Acc. (%)

(Accuracy

drop)

PS

(MB)

FLOPs

(E6)

AlexNet

CIFA
R-10

O-O-O
91.85

(▼ 0.34%)
4.93

(PC:

47.28x)

414.94

(FC:

1.72x)

Seq.
91.04

(▼ 1.15%)

CIFA
R-100

O-O-O
72.50

(▼ 0.36%)

5.71
(PC:

40.82x)

419.39

(FC:
1.69x)

Seq.
72.08

(▼ 0.78%)

 * PS: Parameter Size; PC: Parameter size Compression;

FC: FLOPs compression; OOO: Out-of-Order

VGG16 with CIFAR-10 and CIFAR-100: We also apply

our method to deeper networks to analyze its performance in

more complex architectures. In this case, the threshold factor

is 0.99 for CIFAR-10 and 0.997 for CIFAR-100. As observed

in the case of AlexNet, pruning will be applied to the last

layer because it would damage the performance of the final

model. The model has tuned for five epochs after pruning

each layer. Table VI presents the results of the pruning

schedule algorithm, and Table VII shows the accuracy and

compression of the pruned model.

Table 6: Proposed Layer Order and Pruning Rate

Model Dataset
Order of Conv.

Layers
Pruning Rate

VGG16

CIFAR-10
[0, 1, 9, 11, 6, 4,

5, 8, 2, 3, 7, 10]

[0.8, 0.5, 0.4, 0.6,
0.5, 0.8, 0.6, 0.5,

0.8, 0.5, 0.5, 0.5]

CIFAR-100
[6, 1, 2, 0, 4, 8,

9, 11, 7, 3, 5, 10]

[0.3, 0.5, 0.7, 0.8,
0.4, 0.3, 0.1, 0.3,

0.5, 0.7, 0.5, 0.4]

Table 7: Accuracy and Compression Results of the

Accuracy-Aware Method

Baseline

Model Dataset Accuracy (%)
PS

(MB)

FLOPs

(E6)

VGG16
CIFAR-10 92.81 527.7

9
15.48

CIFAR-100 74.09

Accuracy-Aware Pruning Method

Original

Model
Dataset

Order

Conv

Acc. (%)

(Accuracy

drop)

PS

(MB)

FLOPs

(E6)

VGG16

CIFAR-1

0

O-O-O
92.48

(▼ 0.33%)
3.93
(PC:

35.21
x)

 2.74
(FC:

5.66x)

Seq.

91.15
(▼ 1.66%)

CIFAR-1

00

O-O-O
72.80

(▼ 1.29%)

7.09

(PC:
19.50

x)

4.76

(FC:
3.25x)

Seq.

72.28

(▼ 1.81%)

 * PS: Parameter Size; PC: Parameter size Compression;

FC: FLOPs compression; OOO: Out-of-Order

VGG16 with Cifar-10 and Cifar-100: The graph in

Figure 9 represents the training accuracy of the model after

pruning one layer at a time and training the model for five

epochs. When applying our method, the last layer provides a

slightly higher accuracy than the final layers in the existing

sequential order. These performance changes can explain the

differences in the final accuracy of the pruned model.

[Fig.9: Pruning Performance Comparison: Original

Order vs. Out-of-Order]

VI. CONCLUSION

Deep neural networks (DNNs) have several technical issues

as the network size gets more complex. Those issues include

computational complexity, redundancy, and parameter size.

Many parameters require high memory capacity. That might

cause migration problems to embedded devices. Many

pruning techniques are applied to reduce the network size in

deep neural networks, but various issues still exist when

DNNs apply the pruning techniques.

Several applications use autoencoders among neural

networks, including dimensionality reduction, data

reconstruction, anomaly detection, and classification

problems. On the other hand, autoencoders are not used in

practical data compression problems because modern

algorithms perform better without the required training. It

would also be impractical to gather a dataset for each

compression application because the autoencoder provides

performance less on transfer learning. Also, network size is a

disadvantage of autoencoders. The architecture of the

autoencoders has a double workload due to the encoding and

decoding processes. In this research, we choose autoencoders

and two deep neural networks – AlexNet and VGG16. We

perform the sensitivity analysis to explore the performance

variations for the network architecture and network

complexity through an out-of-order layer pruning

mechanism.

Accordion AutoEncoder (A2E) provides good performance

because it has multiple compressions and decompressions for

annealing the features to reduce the reconstruction error and

for credit card fraud detection and MNIST classification and

measure the performance (accuracy). Our results show 4.9%

and 13.6% performance drops, respectively, but we observe a

reduction in network complexity, 85.1% and 94.5% for each

application.

http://doi.org/10.35940/ijsce.E3650.14051124
http://doi.org/10.35940/ijsce.E3650.14051124
http://www.ijsce.org/

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307 (Online), Volume-14 Issue-5, November 2024

28

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.E365014051124
DOI: 10.35940/ijsce.E3650.14051124
Journal Website: www.ijsce.org

We extend the out-of-order layer pruning to deeper learning

networks. Various research proposes methodologies to

reduce the complexity. In our approach, we propose a simple

yet efficient scheme, accuracy-aware structured filter pruning

based on the characterization of each convolutional layer

combined with the quantization of fully connected layers. We

investigate the accuracy and compression rate of each layer

using a fixed pruning ratio and reorder the pruning priority

depending on the accuracy of each layer. Our analysis of

layer characterization shows that the pruning order of the

layers does affect the final accuracy of the deep neural

network. Based on our experiments using the proposed

pruning scheme, the parameter size can be reduced up to

47.28 times in AlexNet compared to the original model.

Similar results are also obtained with VGG16, achieving a

maximum compression rate of 35.21x.

For the future work, we will optimize pruning and

compression rates while maintaining overall performance.

Also, it will be meaningful work to apply our method to much

deeper architectures.

DECLARATION STATEMENT

After aggregating input from all authors, I must verify the

accuracy of the following information as the article's author.

▪ Conflicts of Interest/ Competing Interests: Based on

my understanding, this article has no conflicts of interest.

▪ Funding Support: This article has not been sponsored or

funded by any organization or agency. The independence

of this research is a crucial factor in affirming its

impartiality, as it has been conducted without any

external sway.

▪ Ethical Approval and Consent to Participate: The data

provided in this article is exempt from the requirement for

ethical approval or participant consent.

▪ Data Access Statement and Material Availability: The

adequate resources of this article are publicly accessible.

▪ Authors Contributions: The authorship of this article is

contributed equally to all participating individuals.

REFERENCES

1. D. Bank, N. Koenigstein, R. Giryes, "Autoencoders," Book Chapter in

Machine Learning for Data Science Handbook, 2023.

https://doi.org/10.1007/978-3-031-24628-9_16

2. S. Lin, R. Ji, Y. Li, C. Deng, X. Li "Towards Compact ConvNets via

Structure-Sparsity Regularized Filter Pruning," IEEE Transactions on

Neural Networks and Learning Systems, 2020.

https://doi.org/10.1109/tnnls.2019.2906563

3. S. S. Tirumala, "A Novel Weights of Weights Approach for Efficient

Transfer Learning in Artificial Neural Networks," Procedia Computer

Science, 2022. https://doi.org/10.1016/j.procs.2022.11.013

4. J. Luo, J. Wu, W. Lin, "ThiNet: A Filter Level Pruning Method for Deep

Neural Network Compression," IEEE International Conference on

Computer Vision, 2017. https://doi.org/10.1109/iccv.2017.541

5. J. Guo, M. Potkonjak, "Pruning ConvNets Online for Efficient

Specialist Models," IEEE Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), 2017.

https://doi.org/10.1109/cvprw.2017.58

6. P. Hu, X. Peng, H. Zhu, M. Aly, J. Lin, "OPQ: Compressing Deep

Neural Networks with One-shot Pruning-Quantization," Proceedings of

the AAAI Conference on Artificial Intelligence, 2021.

https://doi.org/10.1609/aaai.v35i9.16950

7. G. E. Hinton and R. R. Salakhutdinov, "Reducing the Dimensionality of

Data with Neural Networks," SCIENCE Vol. 313, Issue 5786, pp.

504-507, 2006. https://doi.org/10.1126/science.1127647

8. M. Kon and L. Plaskota, "Information Complexity of Neural Networks,"

Neural Network, 2000. https://doi.org/10.1016/s0893-6080(00)00015-0

9. Neloy, M. Turgeon, "A Comprehensive Study of Auto-Encoders for

Anomaly Detection: Efficiency and Trade-Offs," SSRN, 2024.

http://dx.doi.org/10.2139/ssrn.4757204.

10. S. Bhatia, R. Bajaj, S. Hazari, "Analysis of Credit Card Fraud Detection

Techniques," International Journal of Science and Research (IJSR),

2006. https://doi.org/10.21275/v5i3.nov162099.

11. J. Romero, J. P. Olson, and A. Aspuru-Guzik, "Quantum autoencoders

for efficient compressions of quantum data," arXiv:1612.02806, 2017.

https://doi.org/10.1088/2058-9565/aa8072

12. Krizhevsky, I. Sutskever, G. E. Hinton, "ImageNet classification with

deep convolutional neural networks," Proceedings of the 25th

International Conference on Neural Information Processing Systems,

2017. https://doi.org/10.1145/3065386

13. J. Kim, J. Lee, K. Lee, "Accurate Image Super-Resolution Using Very

Deep Convolutional Networks," IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.

https://doi.org/10.1109/cvpr.2016.182

14. Jiang, G, Goldsztein, "Convolutional Neural Network Approach to

Classifying the CIFAR-10 Dataset," Journal of Student Research, 2023.

https://doi.org/10.47611/jsrhs.v12i2.4388.

15. Y. Zheng, H. Huang, J. Chen, "Comparative analysis of various models

for image classification on Cifar-100 dataset," Journal of Physics, 2024.

https://doi.org/10.1088/1742-6596/2711/1/012015.

16. N. Ketkar, J. Moolayil, "Introduction to PyTorch," Book Chapter in

Deep Learning with Python, 2021.

https://doi.org/10.1007/978-1-4842-5364-9_2

17. F. Nielsen, "Linking ImageNet WordNet Synsets with Wikidata,"

WWW '18: Companion Proceedings of the The Web Conference, 2018.

https://doi.org/10.1145/3184558.3191645.

18. J. Naylor, K. P. Li, "Analysis of a neural network algorithm for vector

quantization of speech parameters," ITT Defense Communications

Division, 1988. https://doi.org/10.1016/0893-6080(88)90341-3.

19. Li, D. Chen, L. Shi, B. Jin, J. Goh, and S. Ng, "MAD-GAN: Multivariate

Anomaly Detection for Time Series Data with Generative Adversarial

Networks," arXiv:1901.04997, 2019.

https://doi.org/10.1007/978-3-030-30490-4_56

20. E. Bisong, "Autoencoders," Book Chapter in Building Machine

Learning and Deep Learning Models on Google Cloud Platform, 2019.

https://doi.org/10.1007/978-1-4842-4470-8_37.

21. K. Kelso and B. Lee, "Accordion Autoencoders (A2E) for Generative

Classification with Low Complexity Network," International

Symposium on Computational Intelligence, December 2021.

https://doi.org/10.1109/csci54926.2021.00152

22. M. Carballo and B. Lee, "Accuracy-aware Structured Filter Pruning for

Deep Neural Networks," International Symposium on Artificial

Intelligence, December 2020.

https://doi.org/10.1109/csci51800.2020.00122

23. K. Sai krishna, G. Sreenivasa Raju, P. Praveen Kumar, A Deep Neural

Network for face Recognition. (2019). In International Journal of

Innovative Technology and Exploring Engineering (Vol. 8, Issue 12S,

pp. 420–423). https://doi.org/10.35940/ijitee.l1105.10812s19

24. Young, L., York, J. R., & Kil Lee, B. (2023). Implications of Deep

Compression with Complex Neural Networks. In International Journal

of Soft Computing and Engineering (Vol. 13, Issue 3, pp. 1–6).

https://doi.org/10.35940/ijsce.c3613.0713323

25. Das, S., S, S., M, A., & Jayaram, S. (2021). Deep Learning

Convolutional Neural Network for Defect Identification and

Classification in Woven Fabric. In Indian Journal of Artificial

Intelligence and Neural Networking (Vol. 1, Issue 2, pp. 9–13).

https://doi.org/10.54105/ijainn.b1011.041221

26. Chellatamilan, T., Valarmathi, B., & Santhi, K. (2020). Research Trends

on Deep Transformation Neural Models for Text Analysis in NLP

Applications. In International Journal of Recent Technology and

Engineering (IJRTE) (Vol. 9, Issue 2, pp. 750–758).

https://doi.org/10.35940/ijrte.b3838.079220

27. Magapu, H., Krishna Sai, M. R., & Goteti, B. (2024). Human Deep

Neural Networks with Artificial Intelligence and Mathematical

Formulas. In International Journal of Emerging Science and

Engineering (Vol. 12, Issue 4, pp. 1–2).

https://doi.org/10.35940/ijese.c9803.12040324

http://doi.org/10.35940/ijsce.E3650.14051124
http://doi.org/10.35940/ijsce.E3650.14051124
http://www.ijsce.org/
https://doi.org/10.1007/978-3-031-24628-9_16
https://doi.org/10.1109/tnnls.2019.2906563
https://doi.org/10.1016/j.procs.2022.11.013
https://doi.org/10.1109/iccv.2017.541
https://doi.org/10.1109/cvprw.2017.58
https://doi.org/10.1609/aaai.v35i9.16950
https://doi.org/10.1126/science.1127647
https://doi.org/10.1016/s0893-6080(00)00015-0
http://dx.doi.org/10.2139/ssrn.4757204
https://doi.org/10.21275/v5i3.nov162099
https://doi.org/10.1088/2058-9565/aa8072
https://doi.org/10.1145/3065386
https://doi.org/10.1109/cvpr.2016.182
https://doi.org/10.47611/jsrhs.v12i2.4388
https://doi.org/10.1088/1742-6596/2711/1/012015
https://doi.org/10.1007/978-1-4842-5364-9_2
https://doi.org/10.1145/3184558.3191645
https://doi.org/10.1016/0893-6080(88)90341-3
https://doi.org/10.1007/978-3-030-30490-4_56
https://doi.org/10.1007/978-1-4842-4470-8_37
https://doi.org/10.1109/csci54926.2021.00152
https://doi.org/10.1109/csci51800.2020.00122
https://doi.org/10.35940/ijitee.l1105.10812s19
https://doi.org/10.35940/ijsce.c3613.0713323
https://doi.org/10.54105/ijainn.b1011.041221
https://doi.org/10.35940/ijrte.b3838.079220
https://doi.org/10.35940/ijese.c9803.12040324

Efficient Layer Optimizations for Deep Neural Networks

29

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijsce.E365014051124
DOI: 10.35940/ijsce.E3650.14051124
Journal Website: www.ijsce.org

AUTHORS PROFILE

Shafayat Mowla Anik is a Ph.D. student in Electrical and

Computer Engineering at the University of Colorado

Colorado Springs. He received his bachelor’s and master’s
degrees from the University of Dhaka, Bangladesh in

2015 and 2017 respectively. He worked at LiCA
(Laboratory for Intelligent Computer Architecture) as a

Graduate Research Assistant (GRA). Currently, he is a Graduate Teaching

Assistant (GTA) for Electrical and Computer Engineering. His teaching
classes include Circuit and System, Introduction to Signals and Systems Lab,

Advanced Digital Design Methodology, and VLSI-1. His research interests
include cache replacement, deep learning, computer architecture, malware

detection, cybersecurity, low power, logic optimization, embedded processor

design, and performance modeling.

Kevyn Kelso is a master’s student in Electrical and
Computer Engineering at the University of Colorado

Colorado Springs. He received his bachelor’s degree in

Electrical and Computer Engineering (Computer
Engineering major) from the University of Colorado

Colorado Springs in 2021. He worked for EM
Microelectronic as an intern during his senior year. After graduation, he

joined EM Microelectronic as a full-time software engineer. He worked at

LiCA (Laboratory for Intelligent Computer Architecture) as a URA
(Undergraduate Research Assistant) during his undergraduate career. His

research interests include computer architecture, logic optimization,
embedded processor design, malware detection, GPU computations, neural

network optimization and pruning, deep learning, and generative images.

Byeong Kil Lee received a Ph.D. degree in computer

engineering from The University of Texas, Austin, TX, in
2005. He is an Associate Professor with the Department of

Electrical and Computer Engineering at the University of

Colorado at Colorado Springs (UCCS). Dr. Lee worked at
Samsung as a Vice President for five years before joining

UCCS. Also, he was an Assistant Professor at The University of Texas at San
Antonio (UTSA) and a Senior Design Engineer at Texas Instruments (TI) for

five years and four years, respectively. He was also a senior research staff at

the Agency for Defense Development (ADD), Korea, for ten years. His
research interests include computer architecture, workload characterization

of emerging applications, deep learning, application-specific processors,

low-power mobile processors, and cybersecurity. He serves on the program

and organizing committee for conferences and workshops such as ISCA,

ISPASS, IISWC, ICCD, HPCA, ASAP, PACT, ICPP, and UCAS.

Disclaimer/Publisher’s Note: The statements, opinions and

data contained in all publications are solely those of the

individual author(s) and contributor(s) and not of the Blue

Eyes Intelligence Engineering and Sciences Publication

(BEIESP)/ journal and/or the editor(s). The Blue Eyes

Intelligence Engineering and Sciences Publication (BEIESP)

and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods,

instructions or products referred to in the content.

http://doi.org/10.35940/ijsce.E3650.14051124
http://doi.org/10.35940/ijsce.E3650.14051124
http://www.ijsce.org/

